Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2,4,6-Triamino-1,3,5-triazin-1-ium 4-methylbenzenesulfonate monohydrate

Xue-Mei Li, ${ }^{\text {a,b }}$ Li-Ping Lu, ${ }^{\text {a }}{ }^{*}$ Si-Si Feng, ${ }^{\text {a }}$ Hong-Mei Zhang, ${ }^{\text {a }}$ Shi-Dong Qin ${ }^{\text {a }}$ and Miao-Li Zhu* ${ }^{\text {a }}$

${ }^{\text {a }}$ Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University,
Taiyuan, Shanxi 030006, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Yanbei Normal University, Datong, Shanxi 037009, People's Republic of China

Correspondence e-mail: luliping@sxu.edu.cn, miaoli@sxu.edu.cn

The asymmetric unit of the new title melaminium salt, $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{6}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, comprises a melaminium cation, a 4-methylbenzenesulfonate anion and a water molecule. Extensive intermolecular interactions, including hydrogen bonding, feature in the crystal structure.

Comment

Recently, the solid-state physical-organic chemistry of melamine has attracted great interest. In their crystal structures, many hydrogen-bond interactions between melaminium cations and various anions have been established (Janczak \& Perpétuo, 2001a,b,c,d, 2002a,b, 2003, 2004; Perpétuo \& Janczak, 2002; Zhang et al., 2004; Choi et al., 2004). We present here the results of the crystal structure analysis of another ionpair adduct having monoprotonated melaminium, 4-methylbenzenesulfonate and solvent water, (I) (Fig. 1 and Table 1).

(I)

The six-membered aromatic rings of monoprotonated melaminium exhibit significant distortions from the ideal hexagonal form. Thus, the internal $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle at the protonated N atom $(\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2)$ is significantly greater than the other two ring angles (i.e. $\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$ and $\mathrm{C} 1-\mathrm{N} 3-\mathrm{C} 3$), and the internal $\mathrm{N} 2-\mathrm{C} 3-\mathrm{N} 3$ angle, containing only nonprotonated N atoms, is greater than either of the remaining $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angles containing both protonated and non-protonated N atoms (Table 1). This feature of the structure is similar to the other reported monoprotonated melaminium cations (Janczak \& Perpétuo, 2001a,c,d, 2002b, 2003, 2004; Perpétuo \& Janczak, 2002; Zhang et al., 2004; Choi et al., 2004). In the 4methylbenzenesulfonate anion, the $\mathrm{O}-\mathrm{S}$ bond lengths are in the range 1.426 (2) -1.433 (2) \AA and are slightly shorter than those $[1.4439$ (13)-1.4670 (12) \AA] of the p-hydroxybenzenesulfonate anion in melaminium bis(4-hydroxybenzenesulfonate) dihydrate (Janczak \& Perpétuo, 2001b).

Both charged residues and the water molecules interact extensively by a combination of ionic and hydrogen bonds (Table 2), as well as $\pi-\pi$ interactions, as shown in Figs. 2 and 3. Neighboring melaminium residues are interconnected by

[^0]
Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.046$
$w R$ factor $=0.136$
Data-to-parameter ratio $=12.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 31 January 2005 Accepted 23 February 2005 Online 4 March 2005

Figure 1
The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms. The dotted line represents a hydrogen bond.

Figure 2
The packing of the title compound, viewed down the b axis, highlighting the stacking of the sheets along the \mathbf{c} direction. Dashed lines indicate hydrogen bonds.
double $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming a zigzag chain in the ($\overline{114}$) plane extending in the \mathbf{b} direction. The distance between successive zigzag chains is about $3.4 \AA$, affording $\pi-\pi$ interactions and leading to the formation of layers. The zigzag layers are interspersed by layers comprising 4-methylbenzenesulfonate anions and water molecules so as to construct a sheet arrangement stacked along the c axis. Layers are held together by seven different hydrogen bonds, namely four $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between four different SO_{3} residues and four different melaminium amino groups, two

Figure 3
The packing of the title compound, highlighting the inclination between layers. Dashed lines indicate hydrogen bonds.
$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between a water molecule and two different SO_{3} residues, and finally another $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the $\mathrm{N}_{\text {ring }}-\mathrm{H} \mathrm{H}$ atom and a water molecule (Table 2).

The plane of the melaminium residue is inclined at an angle of $65.9(1)^{\circ}$ to the plane of the 4-methylbenzenesulfonate ring, which is slightly smaller than that $\left[72.2(1)^{\circ}\right.$] in melaminium bis(4-hydroxybenzenesulfonate) dihydrate (Janczak \& Perpétuo, 2001b).

Experimental

Hot solutions of melamine and 4-methylbenzenesulfonic acid in a 1:1 molar ratio were mixed and, after allowing the mixture to stand at room temperature for a few days, suitable colorless crystals for the X-ray diffraction experiment were desposited.

Crystal data

$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{6}{ }^{+} \cdot \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=316.35$
Triclinic, $P \overline{1}$
$a=6.413$ (2) Å
$b=7.285$ (3) \AA
$c=15.654$ (6) A
$\alpha=97.229(4)^{\circ}$
$\beta=92.625(4)^{\circ}$
$\gamma=105.200(5)^{\circ}$
$V=697.7(4) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.506 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1979 \\
& \quad \text { reflections } \\
& \theta=2.6-26.9^{\circ} \\
& \mu=0.26 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.40 \times 0.40 \times 0.40 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1K CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.903, T_{\text {max }}=0.903$
3382 measured reflections

$$
\begin{aligned}
& 2390 \text { independent reflections } \\
& 2072 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.016 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-7 \rightarrow 6 \\
& k=-8 \rightarrow 7 \\
& l=-18 \rightarrow 18
\end{aligned}
$$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0813 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$	$+0.2249 P]$
$w R\left(F^{2}\right)=0.136$	where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=1.06$	$(\Delta / \sigma)_{\max }=0.004$
2390 reflections	$\Delta \rho_{\max }=0.38 \mathrm{e}^{-3}$
192 parameters	$\Delta \rho_{\min }=-0.31 \mathrm{e}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: $0.061(8)$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

C1-N4	$1.318(3)$	C2-N1	$1.361(3)$
C1-N3	$1.324(3)$	C3-N6	$1.320(3)$
C1-N1	$1.358(3)$	C3-N2	$1.350(3)$
C2-N5	$1.315(3)$	C3-N3	$1.355(3)$
C2-N2	$1.324(3)$		
N4-C1-N3	$120.7(2)$	N2-C2-N1	$121.0(2)$
N4-C1-N1	$117.8(2)$	N6-C3-N2	$117.7(2)$
N3-C1-N1	$121.5(2)$	N6-C3-N3	$116.0(2)$
N5-C2-N2	$121.2(2)$	N2-C3-N3	$126.3(2)$
N5-C2-N1	$117.8(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$120.03(19)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {i }}$	0.86	1.83	2.692 (3)	179
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 1^{\text {ii }}$	0.85	1.94	2.732 (3)	154
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 2$	0.85	2.26	2.906 (4)	133
N6-H6B \cdots N $3^{\text {iii }}$	0.86	2.20	3.058 (3)	172
N6-H6A . $\mathrm{O}^{\text {iv }}$	0.86	2.24	2.885 (3)	132
N5-H5B $\cdots \mathrm{O}^{\text {v }}$	0.86	2.12	2.957 (3)	165
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{~N} 2^{\text {vi }}$	0.86	2.19	3.049 (3)	172
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 2^{\text {i }}$	0.86	2.20	2.989 (3)	153
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 3^{\text {vii }}$	0.86	2.06	2.906 (3)	167

H atoms were placed in calculated positions and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}$ (parent atom) for aromatic, N - and O -bound H atoms, and $1.5 U_{\text {eq }}$ (parent atom) for methyl H atoms. The distances were fixed at $\mathrm{Csp} p^{2}-\mathrm{H}=0.93 \AA$, $\mathrm{Csp}{ }^{3}-\mathrm{H}=0.96 \AA, \mathrm{O}-\mathrm{H}=0.85 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

This work was supported by the National Natural Science Foundation of China (grant No. 20471033) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2002 for MLZ.

References

Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Choi, C. S., Venkatraman, R., Kim, E. H., Hwanga, H. S. \& Kangc, S. K. (2004). Acta Cryst. C60, o295-o296.
Janczak, J. \& Perpétuo, G. J. (2001a). Acta Cryst. C57, 123-125.
Janczak, J. \& Perpétuo, G. J. (2001b). Acta Cryst. C57, 873-875.
Janczak, J. \& Perpétuo, G. J. (2001c). Acta Cryst. C57, 1120-1122
Janczak, J. \& Perpétuo, G. J. (2001d). Acta Cryst. C57, 1431-1433.
Janczak, J. \& Perpétuo, G. J. (2002a). Acta Cryst. C58, o339-o341.
Janczak, J. \& Perpétuo, G. J. (2002b). Acta Cryst. C58, o455-o459.
Janczak, J. \& Perpétuo, G. J. (2003). Acta Cryst. C59, o349-o352.
Janczak, J. \& Perpétuo, G. J. (2004). Acta Cryst. C60, o211-o214.
Perpétuo, G. J. \& Janczak, J. (2002). Acta Cryst. C58, o112-o114.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Zhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y \& Yao, Y.-G. (2004). Acta Cryst. E60, o462-o463.

[^0]: (C) 2005 International Union of Crystallography

