Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xue-Mei Li,^{a,b} Li-Ping Lu,^a* Si-Si Feng,^a Hong-Mei Zhang,^a Shi-Dong Qin^a and Miao-Li Zhu^a*

^aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China, and ^bDepartment of Chemistry, Yanbei Normal University, Datong, Shanxi 037009, People's Republic of China

Correspondence e-mail: luliping@sxu.edu.cn, miaoli@sxu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.004 Å R factor = 0.046 wR factor = 0.136 Data-to-parameter ratio = 12.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

2,4,6-Triamino-1,3,5-triazin-1-ium 4-methylbenzenesulfonate monohydrate

The asymmetric unit of the new title melaminium salt, $C_3H_7N_6^+ \cdot C_7H_7O_3S^- \cdot H_2O$, comprises a melaminium cation, a 4-methylbenzenesulfonate anion and a water molecule. Extensive intermolecular interactions, including hydrogen bonding, feature in the crystal structure.

Received 31 January 2005 Accepted 23 February 2005 Online 4 March 2005

Comment

Recently, the solid-state physical–organic chemistry of melamine has attracted great interest. In their crystal structures, many hydrogen-bond interactions between melaminium cations and various anions have been established (Janczak & Perpétuo, 2001*a,b,c,d*, 2002*a,b*, 2003, 2004; Perpétuo & Janczak, 2002; Zhang *et al.*, 2004; Choi *et al.*, 2004). We present here the results of the crystal structure analysis of another ionpair adduct having monoprotonated melaminium, 4-methylbenzenesulfonate and solvent water, (I) (Fig. 1 and Table 1).

The six-membered aromatic rings of monoprotonated melaminium exhibit significant distortions from the ideal hexagonal form. Thus, the internal C-N-C angle at the protonated N atom (C1-N1-C2) is significantly greater than the other two ring angles (*i.e.* C2-N2-C3 and C1-N3-C3), and the internal N2-C3-N3 angle, containing only nonprotonated N atoms, is greater than either of the remaining N-C-N angles containing both protonated and non-protonated N atoms (Table 1). This feature of the structure is similar to the other reported monoprotonated melaminium cations (Janczak & Perpétuo, 2001a,c,d, 2002b, 2003, 2004; Perpétuo & Janczak, 2002; Zhang et al., 2004; Choi et al., 2004). In the 4methylbenzenesulfonate anion, the O-S bond lengths are in the range 1.426 (2)–1.433 (2) Å and are slightly shorter than those [1.4439 (13)-1.4670 (12) Å] of the *p*-hydroxybenzenesulfonate anion in melaminium bis(4-hydroxybenzenesulfonate) dihydrate (Janczak & Perpétuo, 2001b).

Both charged residues and the water molecules interact extensively by a combination of ionic and hydrogen bonds (Table 2), as well as π - π interactions, as shown in Figs. 2 and 3. Neighboring melaminium residues are interconnected by

Figure 1

The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms. The dotted line represents a hydrogen bond.

Figure 2

The packing of the title compound, viewed down the *b* axis, highlighting the stacking of the sheets along the **c** direction. Dashed lines indicate hydrogen bonds.

double N—H···N hydrogen bonds, forming a zigzag chain in the ($\overline{114}$) plane extending in the **b** direction. The distance between successive zigzag chains is about 3.4 Å, affording π – π interactions and leading to the formation of layers. The zigzag layers are interspersed by layers comprising 4-methylbenzenesulfonate anions and water molecules so as to construct a sheet arrangement stacked along the *c* axis. Layers are held together by seven different hydrogen bonds, namely four N—H···O hydrogen bonds between four different SO₃ residues and four different melaminium amino groups, two

The packing of the title compound, highlighting the inclination between layers. Dashed lines indicate hydrogen bonds.

 $O-H\cdots O$ hydrogen bonds between a water molecule and two different SO_3 residues, and finally another $N-H\cdots O$ hydrogen bond between the $N_{ring}-H$ H atom and a water molecule (Table 2).

The plane of the melaminium residue is inclined at an angle of 65.9 $(1)^{\circ}$ to the plane of the 4-methylbenzenesulfonate ring, which is slightly smaller than that [72.2 $(1)^{\circ}$] in melaminium bis(4-hydroxybenzenesulfonate) dihydrate (Janczak & Perpétuo, 2001*b*).

Experimental

Hot solutions of melamine and 4-methylbenzenesulfonic acid in a 1:1 molar ratio were mixed and, after allowing the mixture to stand at room temperature for a few days, suitable colorless crystals for the X-ray diffraction experiment were desposited.

Crystal data

 $T_{\rm min}=0.903,\ T_{\rm max}=0.903$

3382 measured reflections

$C_3H_7N_6^+ \cdot C_7H_7O_3S^- \cdot H_2O$	Z = 2
$M_r = 316.35$	$D_x = 1.506 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 6.413 (2) Å	Cell parameters from 1979
b = 7.285(3) Å	reflections
c = 15.654 (6) Å	$\theta = 2.6-26.9^{\circ}$
$\alpha = 97.229 \ (4)^{\circ}$	$\mu = 0.26 \text{ mm}^{-1}$
$\beta = 92.625 (4)^{\circ}$	T = 293 (2) K
$\gamma = 105.200(5)^{\circ}$	Block, colorless
$V = 697.7 (4) \text{ Å}^3$	$0.40\times0.40\times0.40$ mm
Data collection	
Bruker SMART 1K CCD area-	2390 independent reflections
detector diffractometer	2072 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.016$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 2000)	$h = -7 \rightarrow 6$

 $-18 \rightarrow 18$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0813P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 0.2249P]
$wR(F^2) = 0.136$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.004$
2390 reflections	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
192 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL9
-	Extinction coefficient: 0.061 (8)

Table	1		
01	1		

Selected geometric parameters (Å, °).

C1-N4	1.318 (3)	C2-N1	1.361 (3)
C1-N3	1.324 (3)	C3-N6	1.320 (3)
C1-N1	1.358 (3)	C3-N2	1.350 (3)
C2-N5	1.315 (3)	C3-N3	1.355 (3)
C2-N2	1.324 (3)		
N4-C1-N3	120.7 (2)	N2-C2-N1	121.0 (2)
N4-C1-N1	117.8 (2)	N6-C3-N2	117.7 (2)
N3-C1-N1	121.5 (2)	N6-C3-N3	116.0 (2)
N5-C2-N2	121.2 (2)	N2-C3-N3	126.3 (2)
N5-C2-N1	117.8 (2)	C1 - N1 - C2	120.03 (19)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1\cdots O4^{i}$	0.86	1.83	2.692 (3)	179
$O4-H42\cdots O1^{ii}$	0.85	1.94	2.732 (3)	154
O4−H41···O2	0.85	2.26	2.906 (4)	133
N6−H6B···N3 ⁱⁱⁱ	0.86	2.20	3.058 (3)	172
N6-H6A···O3 ^{iv}	0.86	2.24	2.885 (3)	132
$N5-H5B\cdotsO1^{v}$	0.86	2.12	2.957 (3)	165
N5-H5 A ···N2 ^{vi}	0.86	2.19	3.049 (3)	172
$N4-H4B\cdots O2^{i}$	0.86	2.20	2.989 (3)	153
N4 $-$ H4 A ···O3 ^{vii}	0.86	2.06	2.906 (3)	167

Symmetry codes: (i) x - 1, y - 1, z; (ii) x, 1 + y, z; (iii) 1 - x, -y, 1 - z; (iv) 1 - x, 1 - y, 1 - z; (v) x - 1, y, z; (vi) -x, 1 - y, 1 - z; (vii) x, y - 1, z.

H atoms were placed in calculated positions and allowed to ride on their parent atoms, with $U_{iso}(H)$ values set at $1.2U_{eq}(\text{parent atom})$ for aromatic, N- and O-bound H atoms, and $1.5U_{eq}(\text{parent atom})$ for methyl H atoms. The distances were fixed at $Csp^2-H = 0.93$ Å, $Csp^3-H = 0.96$ Å, O-H = 0.85 Å and N-H = 0.86 Å.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL/PC* (Sheldrick, 1999); software used to prepare material for publication: *SHELXTL/PC*.

This work was supported by the National Natural Science Foundation of China (grant No. 20471033) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2002 for MLZ.

References

Bruker (2000). *SMART* (Version 5.0) and *SAINT* (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, C. S., Venkatraman, R., Kim, E. H., Hwanga, H. S. & Kangc, S. K. (2004). Acta Cryst. C60, 0295–0296.

Janczak, J. & Perpétuo, G. J. (2001a). Acta Cryst. C57, 123-125.

Janczak, J. & Perpétuo, G. J. (2001b). Acta Cryst. C57, 873-875.

Janczak, J. & Perpétuo, G. J. (2001c). Acta Cryst. C57, 1120-1122.

Janczak, J. & Perpétuo, G. J. (2001d). Acta Cryst. C57, 1431-1433.

Janczak, J. & Perpétuo, G. J. (2002a). Acta Cryst. C58, 0339-0341.

Janczak, J. & Perpétuo, G. J. (2002b). Acta Cryst. C58, 0455–0459.

Janczak, J. & Perpétuo, G. J. (2003). Acta Cryst. C59, 0349-0352.

Janczak, J. & Perpétuo, G. J. (2004). Acta Cryst. C60, 0211–0214. Perpétuo, G. J. & Janczak, J. (2002). Acta Cryst. C58, 0112-0114.

Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Sheldrick, G. M. (1999). *SHELXTL/PC*. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.

Zhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y & Yao, Y.-G. (2004). Acta Cryst. E60, 0462–0463.